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Abstract 

A geometric derivation of W, gravity based on Fedosov’s deformation quantization of sym- 
plectic manifolds is presented. To lowest order in Planck’s constant it agrees with Hull’s geometric 
formulation of classical non-chiral W, gravity. The fundamental object is a W-valued connection 
one form belonging to the exterior algebra of the Weyl algebra bundle associated with the symplec- 
tic manifold. The W-valued analogs of the self-dual Yang-Mills equations, obtained from a zero 
curvature condition, naturally lead to the Moyal Plebanski equations, furnishing Moyal deforma- 
tions of self-dual gravitational backgrounds associated with the complexified cotangent space of a 
two-dimensional Riemann surface. Deformation quantization of W, gravity is retrieved upon the 
inclusion of all the ti terms appearing in the Moyal bracket. Brief comments on non commutative 
geometry and M(atrix) theory are made. 02000 Elsevier Science B.V. All rights reserved. 

Subject clsss: Differential geometry 
MSC: 32C34; 34C35; 58H15 
Keywords: Integrable systems; Star products; W-geometry; Moyal-Fedosov quantization; Strings 

1. Introduction 

Since the classic work of Bayen et al. [l], Moyal deformation quantization techniques 
[2-51 are starting to become very relevant in the area of non-commutative geometry, for 
example (see [2 l] for a current review). W, algebras, strings, gravity, etc. were very popular 
candidates to extensions of the ordinary two-dimensional conformal field theory (CFT) 
description of strings based on Kac-Moody and Virasoro algebras . For an extensive review 
on higher conformal spin extensions of CFT we refer to the Physics Reports article [8]. 
Not long ago, the author [14,15] was able to show that non-critical W, strings are devoid 
of BRST anomalies for target spacetimes of dimension D = 27. The supersymmetric case 
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yielded D = 11 and we suggested that the an anomaly free (super) membrane should 
support non-critical W, strings in their spectrum. 

W, covariance is of crucial importance in the Weyl-Wigner-Groenewold-Moyal quan- 
tization process [7] and for this purpose its relevance should be investigated further. The role 
of W, algebras in Moyal quantization was also investigated by [24]. The authors in [32,33] 
were able to realize that nonlinear W, algebras could be obtained by Moyal deformations 
of the classical woo linear ones. Other important connections among membranes and strings 
were raised in [34]. 

In this paper we present a very natural framework, in the language of Fedosov’s defor- 
mation quantization [6], where the original formulation of W, geometry presented by Hull 
[9,10] can be incorporated in a very simple fashion. In Section 2 we discuss Fedosov’s 
geometry and Moyal SDYM theories in R4. 

In Section 3.1 we shall present an indispensable review of Hull’s formulation of W, 
gravity, while in Section 3.2, we will show how Hull’s formulation of W, gravity, written 
in terms of a single action containing higher derivatives of a single scalar field, is a just the 
tie component of a more general action corresponding to the Fedosov deformation quanti- 
zation of two-dimensional symplectic manifolds. The full action containing the Fedosov’s 
deformation quantization of Hull’s action is constructed, to all powers in ti, at the end of 
Section 3.2. 

In Section 4 we shall follow a different route than the one based on Yang-Mills the- 
ories and use the chiral-model approach to self dual gravity. The Fedosov deformation 
quantization techniques will be applied to such chiral models yielding deformations of the 
second heavenly equations associated with self dual gravity (versus the first heavenly equa- 
tions). We will also discuss Quantum W-valued Yang-Mills theories in D = 2 and their 
relation to the quantization of Hull’s action and W, gravity. Finally, in Section 4.2, the 
method of induced W, gravity from WZNW models and their suitable Fedosov deformation 
quantization are discussed at the completion. This last construction is based on deforma- 
tions of the co-adjoint orbits method of the area-preserving diffs algebra [59], the W, 
algebra. 

In Section 5 we outline some of the many applications that deformation quantization 
techniques have in the theory of extended objects. 

2. Fedosov geometry and Moyal self-dual Yang-Mills 

2.1. Fedosov’s deformation quantization 

In essence, Fedosov’s [6,42-46] deformation quantization; i.e. deformations of the Pois- 
son Lie algebra structure on a symplectic manifold, is a generalization of the Bayen et al. 
[ 11 and the Weyl, Wigner, Groenewold, Moyal (WWGM) [2-51 deformation quantization 
on flat phase spaces. Given a symplectic manifold, M of dimension 2n, with a symplectic 
globally defined non-degenerate two-form o, allows to define a symplectic structure in each 
tangent space, T,M to the point X. The Weyl algebra, W-r corresponding to the symplectic 
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space, T’,M, is the associative non-commutative algebra over C with a unit element. The 
elements of the Weyl agebra are defined by a formal power series: 

U(y) = C hkUk,i, . ..i.yi’ ’ ’ ’ yi’, 2k + 1 2 0. 

where h is a formal parameter which can be identified with fi and the coordinates, y ' , . . . , y *” 
E i”‘. M are associated to a tangent vector at the point x. The degrees 1,2 are prescribed for 
the variables y, h respectively, so one is summing in Eq. (1) over elements of the algebra 
of non-negative degree. The non-commutative product on the Weyl algebra, W,, which 
determines its associative character, of two elements, u(y), b(y) is defined: 

where w’j are the components of the inverse tensor of Oij, the sympectic two-form. 
Having defined the Weyl algebra at a point x E M one can defined an algebra bundle 

structure by taking disjoint unions of the Weyl algebras at each point; i.e. a fiberwise 
addition, In this fashion a Weyl algebra bundle, W, is constructed as x runs over all the 
points in M. This allows to build in a set of sections, E(W), denoted by a(.~, y, ti> which 
can be written in a power series: 

U(x, y, hi) = Chknk,i,...i,(x)yi’ ” ’ yi’, 2k+l L 0, (3) 

where now uk.i, . ..i. (x) are a set of smooth functions defined on the symplectic manifold. 
Differential forms can be constructed whose elements are W-valued (instead of the custom- 
ary forms taking values in a Lie algebra). A W-valued 4 differential form may be written 
as 

A(x, )‘y hi) = c hkak:il . ..i.; il...,jc, (X))“’ . . . )“’ d~j’ A . . * A dxjq, 2k + 1 L 0, (4) 

and an exterior algebra extension of the Weyl algebra bundle, &(W 8 A) is obtained by 
constructing a deformation of the wedge product, A*. Differential operators analogous to the 
exterior derivative and its dual (divergence) are defined in [6] and reviewed in [ 17,42-46]. 
We shall not repeat it here. 

A torsion-free symplectic connection, a, preserving the symplectic structure can also be 
defined. The symplectic connection does not change the degree of the Weyl algebra bundle, 
a : E(Wp 63 A”) + &(W, 63 fly+‘). Fedosov defined a more general connection, D, the 
analog of a gauge covariant derivative, acting in an element, a, of the Weyl algebra bundle 
as 

Du=au+-$y,ul. y EE(W@d), 

for y a globally defined W-valued one form. Since every symplectic manifold can be 
equipped with an almost complex structure, J, such that the tensor defined by g(X, Y) = 
-w(JX, Y) for all vector fields, X, Y, is a Riemannian metric on M. This yields the 
curvature R associated with the symplectic connection: R = 1 /4Ri,jk,yi y j dxk A dx’. The 
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commutator is defined as: [a, b] = a A* b - (- l)qpb A* a, where a, b are respectively 
W-valued q, p differential forms. The curvature of the connection, D, satisfies the property: 

D2a = $0, ul. 1 2 n=R+ay+~Y. 

A connection D is abelian if and only if, for any section, a E &(W @ A’), D2a = 0. Hence 
from (6) one can infer that the curvature of every abelian connection, R, is central (commutes 
with all the elements a of the Weyl algebra) and is proportional to Oij dx’ A dx j . Abelian 
connections are very relevant in the construction of the algebra of quantum observables, 
&(WD), which is the subalgebra of the Weyl algebra bundle comprised ofJIat sections, 

a E E(WD) =+ D*u = 0. (7) 

these flat sections (with respect the abelian connection) generate a subalgebra of the Weyl 
algebra bundle called the algebra of quantum observables. It is the analogous of BRST 
invariant states in string theory. 

Finally one may establish the relationship with the ordinary Moyal star product. Fedosov 
showed that one can assign to a flat section (relative to an abelian connection) u(x, y, t2) 
a central element of the Weyl algebra, a,(.~, y = 0, ti) E 2, and vice versa. The bijection 
map (which we shall not go into details) and the star product in the central elements of the 
algebra, a,, 6, E 2 are: 

cr.W~--+Z, a(u) = uo, 0 -1 a, =a, a, *b, =o(o-‘(a,) .a-‘(b,)) 

=a(u ??b), (8) 

in this way one can construct a star product in the space of central sections, 2, inherited 
from the non-commutative associative Fedosov fiberwise product of flat sections belonging 
to the subalgebra of quantum observables. When the symplectic manifold is flat, R2n, the 
star product reduces then to the ordinary Moyal star product as expected. In this particular 
case the tangent bundle is trivial, T(R2”) - R2” x R2n and there is no difference between 
the fiberwise (y’) Fedosov products and the base space (x”) Moyal ones. For definitions 
of the trace of quantum observables in the Weyl algebra bundle, its inner automorphisms 
(analogous to gauge transformation), symplectic diffs,... we refer to the literature [6,17]. 

2.2. Moyul self dual Yang-Mills 

It has been known for some time to the experts that 40 self dual gravity can be obtained 
from SU(o0) SDYM, an effective 60 theory, by dimensional reduction. We refer to [16] 
for an extensive list of references. The bosonic and supersymmetric case was studied also 
by the author [ 1 I-131. Moyal deformations of self dual gravity were proposed by Strachan 
[25] and rotational Killing symmetry reductions furnished the Moyal quantization of the 
continuous Toda field [ 1 l-l 31 . Generalized Moyal Nahm and continuous Moyal Toda 
equations were developed by [36] based on the work of the SDYM equations by Ivanova 
and Popov [55-571. IV, is a natural symmetry of these integrable theories. Takasaki [26] 
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and Strachan, among many others, have emphasized the importance of higher dimensional 
integrable theories. 

In this section we will write down the main equations of Moyal deformations of SDYM 
theories in R4 leaving all the technical details for the reference [16,17]. The basic equa- 
tions are obtained from a zero curvature condition which allows to gauge two of the fields 
A,, A,. = 0 and yields for the remaining third equation: 

6’,Aj - 8,Af + [A,, A,] = 0. (9) 

A WWGM quantization of a SU (N) SDYM requires finding a representation of the Lie 
algebra su (N) in a suitable Hilbert space, where the i,1 are vector-valued operators living 
in a Hilbert space. A WWGM quantization requires the construction of operators acting 
in the Hilbert space of square integrable functions on the line, L*(R), and the use of the 
symbol WWGM map to define a one-to-one correspondence of self-adjoint operators into 
real valued smooth functions in the phase space q , p associated with the line. Evenfurther, 
the WWGM map takes commutators, l/iri[A, i] into Moyal brackets. In [36] we have 
shown that in general one should enlarge the phase space with the introduction of q’ , pi to 
accomodate for the Moyal deformations of continuum Lie algebras introduced by Saveliev 
and Vershik [58]. Hence Eq. (9) becomes an effective 60 equation after the WWGM 
quantization: 

&Aj - $A, + {A?, A.:}M~~~I = 0. (10) 

where now, A, (x, y, X, j, q, p, hi>. The last equation admits, in the fi -+ 0 limit, reductions 
to many of the known integrable equations, like the Plebanski first and second heavenly 
equations, the Park-Hussain and Grant equations,.... [16]. Furthermore, Eq. (10) may be 
obtained directly from a Lagrangian [16]. In fact, dynamics of higher spin fields can be 
encoded in zero curvature constraints. This has been explained in particular by Vasiliev 
[53,54]. The 60 Moyal SDYM equations (10) admit a reduction to 40 as follows: 

A-=a oXa &-1, 
L’ x X 2 ’ A, = -aJo = -a,.@ + iy, (11) 

with the 60 function 0 : 

0(x, y, x, y, q, p, h) = O’(x + j, x - y, q, p, ti) - i(xX + yj). (12) 

Inserting (11) and (12) into (10) yields the 40 Moyal first heavenly Plebanski equation: 

(a~ 3 DC, }Moyal = 1) Q(w, ur, q, p, fi) E o’, w=x+j;w=x-y. (13) 

Eq. (13) can also be rewritten, due to the fact that the Moyal bracket of the variables x, y , X, j 
is zero: 

The dimensional reduction of the Moyal SDYM theory, from 60 -+ 40, leading to the 
Moyal Plebanski equation, can be interpreted as a foliation of the 60 space into 40 leaves 
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endowed with Moyal deformed (self-dual/anti-self-dual curvatures) hyper-Kahler Ricci flat 
metrics and parametrized by the coordinates X, j of the 60 space: 

]&Ki,)?(X, y, 4, p, h), a,K@(X, Y, 4, p, @}Moyal = 1. (15) 

where Kij (x, y , q, p, 6) is a two-parameter family of Moyal deformed Kahler potentials. 
This is attained by setting in (14) and (15): 

a,Ki,(x, y, q, P, fi> = a,@(:, Ylx, Y, q, P, W> 
&K&, Y, q, P, h) = &@G, 31x, Y, q, P, W. (16) 

Hence, for running values of X = X0; j = j0 which characterize the foliation, Eqs. 
(13)-( 15) yield a two-parameter family of Moyal heavenly metrics encoded in the Moyal 
Plebanski potential: 52 (20, W , q , p, h). The foliation is represented by the two-parameter 
family of four-dimensional non-commutative manifolds, X::j (x, y , q, p, Ii), since the star 
product of two functions in phase space is non-commutative. The connections between 
non-commutative geometry, Matrix models [ 18,19,21,22] and String theory [20] is now 
being developed by a large number of authors. We apologize for excluding many relevant 
references. The relevance of self dual gravity in connection with N = 2 strings was initi- 
ated by [27] and pursued by many others [39,40]. Important remarks about M(atrix) models 
and N = 2 strings have appeared in [38] . The role of self-dual gravity and W, algebras 
was initially worked out, among others, by [28-3 11. This completes this short review about 
Moyal SDYM in R4. 

3. W-Geometry from Fedosov 

3.1. Hull’s formulation of W, gravity 

We consider it important to present a short review of Hull’s formulation of W, gravity 
prior to presenting the main results of this work. Sometime ago, Hull [9,10] with great 
insight, presented a geometric formulation of W, geometry as a gauge theory of the group 
of symplectic diffeomorphisms of the cotangent bundle of a two-dimensional Riemann 
surface, Diff,(T*Af). The infinite set of symmetric gauge tensor fields are h:d,‘“, 
n = 2,3, . . 00; p = 0, 1. These transform as densities under W gauge tranformations: 

&PI ,,.LbT 

($1 = c r3m+n s+2 (m - l,h.j;;“‘“‘a”i;;,~)” - (n - l)l;;$‘“‘“‘a”A;;;~) 
[ 

m,n 

+(m - l)(n - l)a 
1 

*V(LLL’LL2...~...L&) _ i7U(fil~2...*...LLL’) 
p _ 1 ” Cm) (n) (n) 11 Cm) . (17) 

s labels the conformal spin 2, 3,4, . . , cm of the gauge fields whose physical components 
have helicity fs. From the generalized notion of a scalar line element: 

ds = (g,,,,.Ccn dxp’ . . . dx@“)(+) 
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Hull proposed an action of the form: 

s= s d*&x, y>, F(x, y) = &-~nyp, . . . yp,, 
?I=* 

(18) 

where the function @(x, y) is a co-metric W-density in d = 2 instead of a W-scalar. The 
action represents the integrated generalized world interval along a section of the bundle 
T*n/, where the fiber coordinates, ycL, when restricted to a section, E, can be interpreted 
as the gradients of the matter fields yP ] c = y,(x) = a,@(x). Hull used one and only one 
bosonic scalar field, 4(x), living in the two-dimensional world sheet. Later we will see how 
to include a set of matter fields, 4’ (x) representing the embedding spacetime coordinates 
of the string worldsheet. The nonlinear transformation property of the field @(xp) is 

S@ = A(X@, yJ = &,...““(x”)y,, .*. YP,. (19) 
n=2 

However, the formulation based on the infinite number of fields hij”““” was redundant 
(the action was reducible) in the sense that there are more gauge fields than are needed. 
For example, h I”” has three independent components for only two gauge symmetries. Hull 
proved that a gauge invariant (invariant under the transformations given by (17) and (19) 
constraint could be consistently imposed on all the gauge fields in such a way that one could 
recast the action solely in terms of a set of unconstrained fields, AC;“‘“” with their traces 
removed at the linearized level after exploiting the W-Weyl conformal invariance. Thus, 
at the linearized level with respect to a flat qCLV two-dim metric and to lowest order in the 
gauge fields one has 

@I “‘A PI “‘Pa 
(s) = [h(.V, - traces] + O(h*) . . . pjjp”~‘L’ 

(s) 
= @*P”?“‘WL”) +. , . . 

(.y) 
A.‘;I\“‘w”sm’ = [,$$“~“-1 - traces] + O(k*) . . . (20) 

The gauge-invariant background independent master constraint that generates all the con- 
straints on the gauge fields, upon expansion in powers of yP, and which allows to recast the 
action solely in terms of the unconstrained fields is 

det[eI*“(xP, YJ] = 1, ~@“(X’L, YP) = 
a*W, YJ 

aYfiaYU . 

For 2 +2 signature one has - 1 for the determinant instead in the r.h.s. of (21). The constraint 
(21) can be solved in a particular way by recurring to the W-Weyl conformal invariance 
which allows to gauge away all the traces of the unconstrained fields, leaving only traceless 
fields in the action with helicities fs. 

The geometrical significance of the constraint (21) is the following. If one sets yfi = 
zIL + Z,, where zP are the complex coordinates on R4, p = 0, 1, allows to view (x”, zp, 2,) 
as the coordinates for the bundle C T,*N, the complexification of the cotangent space T,*N 
at a point x E N. The co-metric function is then reinterpreted as: 

i(Xb ) yJ = K,(z, 2) = F(xP”, zp + i/J. (22) 
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with K, (z, 2) the Kahler potential depending on the combination z@ + ZcL which is tanta- 
mount of a Killing symmetry reduction condition, the metric does not depend on the two 
imaginary components of +L: 

63) 

The gauge invariant (under the transformations given by (17) and (19) master constraint 
(21) was equivalent to the Monge-Ampere equation (Plebanski equation) for a Ricci flat, 
hyper-Kahler manifold associated with the compexified cotangent space at each point xp, 
of the original two-dimensional surface, world-sheet, N : CT:N - C2. This implies that 
for each XI*, the corresponding curvature tensor is either self-dual or anti-self-dual. Sum- 
marizing, for each, XI-( E N, F(x’-‘, yp = Z~ + &) = K,(z, 2) is the Kahler potential for 
a hyper-Kahler metric on R4 with two commuting tri-holomorphic Killing vectors. Hence, 
K, (z, 2) furnishes a two-parameter family of metrics labeled by the points xfi E N and a 
bundle over N is obtained whose fibers at each point are isomorphic to C2 and equipped 
with a half-flat metric with two Killing vectors. 

When d = 2 it is possible to construct invariant actions under a subgroup of the W 
transformations (symplectic) if, and only if, a W scalar-density exists, F:(x’l, yp) so that 
the action is W-invariant up to surface terms. In d > 2 no such density exists. The reason 
that the action was solely invariant under a subgroup of Diff,(T*N) was due to the fact 
that a constraint on the gauge parameters hT?\“‘” had to be imposed as well because under 
W transformations given by Eqs. (17) and (19), the action behaves like 

6s = 
s 

d2X a,(f2p + X) = 0 =+ x = 0. 

To lowest order in A (xfi , ycc) the constraint X = 0 reads: 

(24) 

det 

[ 

a2(F + A)WL, Yd 
aywaY, = ” 1 

(25) 

for 2 + 2 signature one has -1 on the r.h.s. of (25). The above constraint represents 
injinitesimal deformations of the hyper-Kahler geometry with two-Killing vectors, for a 
deformed Kahler potential F + F + A . The constraint X = 0 on the gauge parameters is 
not fully symplectic-diffs invariant like Eq. (21) was, it is only invariant under a subgroup of 
the symplectic-diffs [9,10]. In the next section we will present a straighforward derivation 
of all these constraints based on Moyal deformations of SDYM. 

Summarizing, invariant actions under a subgroup of the symplectic-diffs can be con- 
structed in terms unconstrained gauge fields, !$\“‘“” , and transformation laws with gauge 

parameters, k:;“‘“” . Their traces can be removed by means of exploiting the W-Weyl 
conformal invariance. These traceless (irreducible) fields and parameters appear in the in- 
variant action and transformation laws nonheady in the form of “G;‘..““, and I:‘,“‘“‘. The 
symmetry algebra of non-chiral W, gravity is a subalgebra of the Diff 0 ( T*N). 

For references on the twistor transform, reductions to WN Geometry and its connection 
to Strominger’s special geometry [37], finite versus infinitesimal transformations, etc... we 
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refer to Hull’s original work [9,10]. Now we are ready to recast the constraints (21) and 
(25) in the language of Fedosov-Moyal quantization. 

3.2. W-Geometry from Moyal-Fedosov 

In the following sections we shall derive the two main results of this work. From the last 
Sections 2.2 and 3.1, we can see that Hull’s construction of IV, geometry fits very naturally 
with the Moyal self dual gravitational equations (14) and (15) (after a Killing symmetry 
reduction) . The ti = 0 limit in Eqs. (14) and (15) of the Moyal brackets turns into Poisson 
brackets and the latter, in turn, can be formulated as a simple determinant: 

j det a2Ki,jkY4,p,fi=o) 

[ apa@ 1 = . 1 
(26) 

where 6 ’ ; t2 plus complex conjugates conjugates i ’ ; g2 are suitable functions of the 
X, y, q, p variables. Two Killing symmetry reductions must be subsequently performed 
in such a way that the X, y, q, p dependence appears solely in the combinations y’ = 
4’ + ii, i = 1, 2. In this fashion one can make contact with the two-Killing symmetry 
reductions imposed by Hull 19,101. The four variables x, y, q, p admit a natural interpre- 
tation in terms of the z~, Zp variables which described the C2 fibers of the complexified 
cotangent space of the two-dim surface, N at a given point A+ E N. The FL = 0 limit of 
the Moyal heavenly equations associated with the two-parameter family of leaves foliating 
the 60 space, after a further Killing symmetry reduction y’ = {’ + $‘, admit a direct 
correspondence with the constraints (21) and (23) present in Hull’s formulation: 

Ki,?;(x, y,q,p,h=O) = Ki,)-(yi =~‘+~‘,h=O) f, K,P(z,,&) 

= K,P(Y~ = Z~ + 2,) = &x@“, yk). (27) 

Since we were able to identify Kf,, (x, y, q, p, h) with a two-parameter family of Moyal-Kahler 
potentials, 0 (i, j Ix, y , q, p, Ii), it follows that Hull’s co-metric density function can natu- 
rally be embedded into 0 by performing the double infinite summation typical of Fedosov’s 
Geometry and recurring to the two Killing symmetry reductions: 

0(X, j+, y, q, p, Ti) = c VO,;i I,... i, (6 + gY’ . . . (C + #‘. (28) 
2n+1>0 

The coefficients belong to a one parameter family of smooth tensorial functions of the .?, y 
variables (parametrized by the integer n): 

@n;ij,...ij(~:, 5). 

Hull’s co-metric density corresponds solely to the tie terms: 

F(X’L, Yfi) ++ Et< + $)i’ ” ’ (t + 6)ir@0:il,...il(i3 5). 

I?0 

(29) 

(30) 
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while the higher order fi corrections implement in one scoop the Moyal deformation quan- 
tization of non-chiral IV, gravity. The series in (30) must start with 1 = 2 in order to match 
the expression for the co-metric density. A truncation to zero of the first two terms in the 
series is necessary. Futhermore, we have an expansion in contravariant vectors versus Hull’s 
expansion in terms of covariant vectors. Indices are raised and lowered using the two-dim 
metric. Eq. (30) may be reinterpreted as the zeroth-order terms (in ti) associated with a 
Fedosov deformation quantization of the symplectic two-dim manifold with coordinates 
X, j. The tangent vector at the each point should have for coordinates y’ = 6’ + ci. This is 
relevant to the chiral model approach to self-dual gravity [ 171 where instead of starting with 
a direct Yang-Mills formulation one writes down the Fedosov deformations of WZNW 
actions. 

If the aforementioned interpretation is adopted, Hull’s action will be the integration of the 
tie component of 0 along a section of the cotangent bundle of the two-dim manifold. Notice 
that this is not the same as taking the Fedosov trace of the zero form, 0, belonging to the 
exterior algebra of the Weyl algebra bundle associated with the two-dim symplectic manifold 
(Riemann surface). Secondly, the W, transformations of the higher spin fields and the matter 
fields in Eqs. (17) and (19) must not be confused with the Fedosov’s non-commutative 
fiberwise product algebra of the y’ coordinates. Although the W, algebra can be identified 
with Moyal deformations of the classical area-preserving diffs [32,33]. The ti corrections 
to the Hull action are then 

with the condition 2n + I > 0 on the double summation meaning that one is summing over 
terms of positive degree of the Weyl algebra, x@ = x0, x’. 

Concluding: Eq. (31) is one of the main results of this work. Hull’action corresponds 
solely to the ho terms and to those values of 1 such that I 2 2. The remaining terms of 
the action, in powers of fi, are the corresponding ones due to the Fedosov deformation 
quantization of non-chiral W, gravity. 

The integral in Eq. (31) is taken along a section, C, of the cotangent bundle of the 
two-dimensional manifold, T*N, where N is parametrized by the coordinates x0, x ‘. The 
fiber coordinates y@, restricted to the section C, can be identified with the gradients of the 
matter field : yfi ] c = ycL(x) = a,@(x) with /.L = 0, 1. 

We emphasize once again that the action Eq. (31) does not have the form of Fedosov’s 
trace of the zero form of the algebra, 0. Fedosov’s trace is relevant in the study of W-valued 
YM theories in D = 4 and its dimensional reduction to D = 2. It is in this context that 
one can evaluate the Fedosov’s trace of the zero form 0. A zero form may be seen as the 
prepotential of a W-valued YM field: A such that a@ = A; where 8 is the torsion-free 
symplectic connection taking a W-valued q differential form into a W-valued q + 1 dif- 
ferential form. We should recall that the torsion free symplectic connection 8 # d where 
d G dx’ A a/ax’. 

The Yang-Mills like curvature is, 7 = dd + A A* A and from this, a Yang-Mills like 
action trF ??F can be constructed using Fedosov’s trace. Dimensional reductions from 
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D = 4 to D = 2 will yield more general actions than those of Hull. In particular, quantum 
deformations of generalized YM theories where the gauge fields take values in the Weyl 
algebra bundle associated with symplectic manifolds instead of the Lie algebra of a group 
G. At the end of Section 4.1 we will write down the action for these W-valued YM theories 
in D = 2. 

It is important not to confuse the W-valued YM theories living in a particular symplectic 
manifold, with the W-valued chiral models. The latter models involve a set of fields living 
in a given manifold but taking values in the Weyl algebra bundle associated with another 
manifold, a curved symplectic space, whose coordinates are q, p and whose fibers are y ’ , y2, 
for example. Whereas, the former W-valued YM theories are genuine theories living on the 
original symplectic manifold. Therefore, the trFo F Yang-Mills like actions on D = 2, for 
example, are not to be confused with a W-valued 2 D chiral model involving the W-valued 
maps from one 2D-manifold to the Weyl algebra bundle of another symplectic manifold. 
This will become clear in the next example. 

To finalize this section it is worthy of mentioning that the other constraint (25) that broke 
the full symplectic-diffs invariance down to a subgroup can also be understood within the 
framework of Moyal SDYM. The analogy of gauge transformations of the Moyal YM 
potentials reads: 

AM + A~LI f aMA + IAM, ~~Moyal~ F~MN + (FMN, kL)~~pl, W-4 

under gauge transformations the zero curvature (SDYM) conditions are preserved and hence 
the Moyal Plebanski equations are naturally gauge invariant exactly like it happened to the 
constraint (21). However, one can see that 0 + 0 + A is not always a symmetry of the 
Moyal SDYM theory. Under shifts in A the Moyal YM potentials do not transform as (3 1) 
but instead: 

A, = -i3,@ j A, -_) A, - i$A. (32b) 

Eq. (32a),(32b) and (32~) does not represent a true gauge transformation of the Ai Moyal 
YM potential due to the gauge non-covariant -a, A piece. One would only have true gauge 
covariance if, and only if, A, h satisfy the property: 

-$A = -$A - {A,, AJMoyal = X 3-h + ]A,, vMoya1 = a&, 

which implies the two conditions: 

(32~) 

{Ay, ~~~~~~~ = 0, -D,A = Dih. 

this is a very restricted condition on the gauge parameter h and the shift parameter A. It is 
not surprising that the symplectic-diffs invariance is not fully preserved under shifts in A of 
the Moyal Kahler potential 0. We recall from [ 161 that A, could be gauged to zero due to 
the zero curvature condition that furnishes the Moyal SDYM equations in R4. Hence, the 
gauge A, = 0 obeys one of the conditions. However, there still remains the other condition 
restricting the parameters h, A in a highly nonlinear manner in terms of the remaining 
Moyal YM potentials. Similar considerations apply for the other Ai; Moyal YM potential. 
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4. Chiral models approach to self-dual gravity and WZNW actions 

4.1. Chiral models and the second heavenly equation 

Instead of the foliation picture presented above of the 60 space into a family of Ricci flat 
40 leaves, based on the relation of the Moyal SDYM equations, theJirst heavenly equations 
and Hull’s formulation of W, gravity; i.e the constraints (21) on the Kahler potential, we 
shall pursue another route. This requires now a formulation based on the chiral model 
approaches to self dual gravity and their relation with the second heavenly equations and to 
extend the construction of Section 2.2 to the case that the phase space manifold parametrized 
by q, p is no longer flat. The fact that Hull’s construction is based on non-chiral W, gravity 
is no obstacle to follow the chiral model approach to self dual gravity. At the end one must 
take the direct sum over the chiral/anti-chiral sectors : W, $ w,. 

Once again, we wish to reiterate that one must not confuse the chiral model approach 
discuss in this section with those of W-valued YM theories. Nevertheless there is a relation 
between the two cases. To this end we shall present below how a chiral model may be related 
with YM theories in D = 2. 

The chiral model we are studying is the following : Let us start with a four-dim mani- 
fold, M4, representing the tangent bundle TN of a 20 manifold N parametrized by the 
x , y coordinates, whose fibers have for coordinates the X, j variables. We collectively label 
the coordinates of M4 by xp’, for p = I, 2,3,4. The gauge fields, AP, live on M4 and 
take values in the Weyl algebra-bundle W constructed over a curved two-dim phase space 
manifold, r, with coordinates q, p and whose tangent-space fibers are y' , y*. The gauge 
fields can be represented as: A,(.@ [q, p, y ’ , y*; hi> . The zeroth-element is the central sec- 
tion of the algebra &(WD) obtained from the projection: (T(A~) = A,(xP 19, p, 0,O; h) = 
A,(x’Llq, p; hi). Fedosov gave the relation which allows one to reconstruct the full iP 
field from the knowledge of the central section: A,. It resembles an expansion in terms of 
Riemannian normal coordinates, 

&(x%, p, Y’, y*; h) 

= A,(x’lqq, p; h) +Yi&A,(x’Iq, p; F-> + ~YiY’YkaiajakA,(x~lq, p; h) 

-~yiy’ykRijklW’mamACL(X~Iq, p; h) + . . . (34) 

where the derivatives & are taken w.r.t the q , p coordinates associated with the symplectic 
manifold r: ai = &, ; 32 = a,,. dm is the inverse of the symplectic form on r and Rijkl its 
curvature on r associated with the symplectic connection. 

The W-valued Yang-Mills in D = 2 can be obtained from the chiral model by identifying 
the four-dim manifold M4 E TN with the tangent bundle of the two-dim curved phase 
space, ‘Tr, such as 

(x7 Y) * (9, P>i (X, j> ff (Y’, Y2). 

and after imposing the conditions on the gauge fields: 

&(xPlq, p. $3 y2; fi) = 0. qlw”lq, p, Y’, y*; hi> = 0. 

Wa) 

Wb) 
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after these identifications and conditions are imposed, which is tantamount of a double 
dimensional reduction from an effective 80 theory down to an effective 40 one, we will 
have a W-valued Yang-Mills field A living in a D = 2 manifold, parametrized by x, y, and 
whose tangent space fibers are y ’ , y*. Such W-valued Yang-Mills differential one-form A 
living in D = 2 is: 

d(x, Y; J", Y*; tz)--sZ, dx + dy dy~C~~An;i,,i?,,,,i,;j(“, Y)yi’Yi2 . . .Yi’ drj. (36) 

k,l 

The components Ak;il.iZ.... .il:j(x, Y> of (36) can be read-off directly from the r.h.s. of Eq. 
(34), after expanding in powers of fi each term, collecting exponents in ti and imposing the 
reduction conditions Eqs. (35a) and (35b). 

Another way to see how the dimensional reductions to a final 40 theory emerges is by 
starting directly from Eq. (10). Such equation can be obtained from a Lagrangian in the 
Moyal case by starting with the usual 40 self-dual Yang-Mills theory. Eq. (10) represents 
the deformations of the six-dimensional version of the second heavenly equation. The main 
difference in the curved phase space case is that one is required to use the non-trivial 
definition of Fedosov’s trace and to take Fedosov’s fiberwise products instead of Moyal 
ones. 

In the special jut phase space limit, F += R*, one recovers naturally the action of [16] 
which reproduces Eq. (10) as its equations of motion. The trace becomes then an ordinary 
integration w.r.t. the 4, p coordinates and the original four-dim action will turn into an 
effective 60 one as a result of taking the Fedosov trace: 

(37) 

where x, y, X, j are the coordinates of M4. The Moyal star product is taken w.r.t. the q, p 

coordinates of the now flat phase space, I = R*. The quantity 0,(x@ 14, p, TL) is a scalar 
field living on M4 and taking values in the space of cent& sections of the &(WD) algebra 
associated with the symplectic manifold F = R2. 

The action (37) yields the equations of motion for the Moyal deformations of the 60 
version of the second heavenly equation. In the classical h = 0 limit, the Moyal brackets 
turn into Poisson ones as usual. A further dimensional reduction of the action given in Eq. 
(37) from 60 to 40 of the type : i3, = 3, and ay = a, furnishes the desired final 40 theory, 
which in the h = 0 limit, retrieves the Park-Hussain second heavenly equations associated 
with the chiral models approach to 40 self dual gravity. Once again, we see that 40 self 
dual gravity is an essential geometrical ingredient in these constructions. 

In the more general case that ti # 0, an integration of Eq. (37) w.r.t. the q , p coordinates, 
accompanied by the dimensional reduction from M4 to two-dimensions, allows once again 
to make contact with the Moyal deformations of Hull’s two-dimensional action (18) (derived 
originally directly from Eq. (10)). 
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Both views should in principle be equivalent since both lead to 40 self dual gravity. One 
is expressed in terms of thefirst heavenly form and the other in terms of the second heavenly 
one. A Darboux transformation relates the first heavenly equation with the second heavenly 
one (the chiral models) . 

The last construction Eq. (37) above relied on the fact that the phase space r was flat. The 
main issue, now, is to construct an action S for the more general case that the phase space 
r (q, p), is curved, and whose flat space limit, renders Eq. (37) for the self dual sector. For 
this is necessary to introduce, explicitly, the definition of Fedosov’s trace . In particular, the 
W-valued YM theory action in a curved D = 2 symplectic manifold is 

s YM = 
s 

d*x tr(F. a, 3=dd+dr\'d, (38) 

where A is given by Eq. (36). In the flat phase space limit, Fedosov’s trace in Eq. (38) 
yields: 

s YM= 
s s 

d*X dqdpa(3.3)= 
s s 

d*x dqdpF,*F,. (39) 

the self dual sector of the action (39) is related to the action of Eq. (37), written in terms 
of the central section O,(x@[q, p; ti), after the dimensional reduction 8, = ai, a, = aj is 
taken in (37). 

Concluding, we have presented three different actions, Eqs. (31),(37) and (38), all of 
them related to quantum Moyal-Fedosov deformations of self dual Yang-Mills, self dual 
gravity and W, geometry. 

The action of Eq. (31) is the Fedosov deformation quantization of Hull’s action (18) 
related to the$rst heavenly equation. Eq. (37) is the action furnishing the Moyal deforma- 
tions of the second heavenly equation associated with the chiral model approach to self dual 
gravity. Finally, Eq. (38) is the W-valued YM theory action in a curved D = 2 manifold. 
The W-valued analogs of the self dual YM equations will provide generalizations of Hull’s 
construction for arbitrary curved two-dim symplectic manifolds. 

4.2. The WZNW models and induced W, gravity 

The co-orbit geometric induced action for W, gravity [59], associated with the infinite 
dimensional Lie algebra of deformations of the differential operators of the circle, DOP(S’ >, 
is nothing but the anomalous effective WZNW action for D = 2 matter fields coupled to a 
chiral W, gravity background: 

S[g] = - 
s 

dt dxReq(U,og-‘o&g) + d 
s 

dtdx Resc[[Znc, g]og-’ o&gog-’ 

-id-‘([Znc,dgog-‘]Adgog-‘)I. (40) 

The physical meaning of the first term is that of a coupling of the chiral W, WZ field 
g = g(t, X; t) to a chiral W, gravity “background” represented by the point (U,, c) of 
the co-adjoint orbit of the dual space G* of the centrally extended infinite dimensional Lie 
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algebra Q of the algebra of DOP (S’ ). The equivalence of the centrally extended DOP (S’ ) 
infinite dimensional Lie algebra and that of W, was demonstrated in [32,33]. 

The variable 6 is the one which appears in the correspondence between pseudo-differential 
operators and symbols : X(6,x) = x&Xk(x) -e xkXk(~)(&)k; i.e < represents a 
momentum-like variable. The coefficients in the 6 expansion of the symbol of the product 
X o Y are given by the infinite series : xk (X o Y)k (x)tk. The residue is obtained by the 
coefficient of 6-t. 

The commutator [X, Y] = X o Y - Y o X. The second integral in (40) contains the 
integrated anomaly and c is the central charge. dd’ is the inverse of the exterior derivative 
operator acting on the group G. The integrals of (40) are over a one-dimensional curve on 
the phase space, or coadjoint orbit O(U,, c) of the W,, with time evolution parameter t. 
Along the curve the exterior covariant derivative becomes d = dta,. 

The Fedosov extension of the action in (40) for more general phase spaces and their 
one-dimensional co-adjoint orbits associated with the Fedosov deformations of the algebra 
of the area-preserving diffs is an interesting project. This will involve an extension of the 
chiral WZ field g = g(t, x; yt, y2, t; h) and a modification of the action (40) where the 
product of symbols is replaced by Fedosov products ??. For an exposition of the Fedosov 
quantization of semisimple co-adjoint orbits see Astashkevisch [42-46]. The induced ge- 
ometric actions in this case will be generalizations of the work of Nisimov and Pacheva. 
Further analysis of the two main views presented in this work : foliations of 60 spaces into 
families of Ricci flat 40 leaves versus reductions of chiral models and the construction of 
induced geometric W, gravity actions from WZNW models [28,29,59] and its Fedosov 
deformation quantization will appear elsewhere. 

5. Conclusion 

We have shown that Hull’s formulation of non-chiral W, geometry fits in very naturally 
inside a larger picture : Moyal-Fedosov geometry. Hull’s constraints (21) and (25) have a 
natural interpretation in the Fedosov-Moyal quantization program. Furthermore, the inclu- 
sion of all the powers in ti, given by the action of Eq. (3 l), implements in a straightforward 
fashion the Fedosov’s deformation quantization of non-chiral W, gravity. 

In general one must consider a Yang-Mills like formulation of W-geometry based on 
a W-valued connection one-form belonging to the exterior algebra of the Weyl-algebra 
bundle associated with the symplectic manifold. Such Yang-Mills like action was given 
in Eq. (38). The chiral model approach to self-dual gravity and WZNW models were also 
discussed. It is an important project to construct, if possible, generalizations of the geometric 
induced W, gravity actions [59] based on Fedosov quantization of WZNW models. 

Some of the advantages of this formulation of W-geometry are the following; 
?? The incorporation of many bosonic fields c@, i = 1,2,3, . . . , D is straightforward in 

Fedosov’s Geometry : the coefficients in the expansion (1) are matrix valued; i.e. the 
coefficients take values in the bundle Horn (E , E) where E is a vector bundle over M. 
For more details on this see [6]. The scalars C$ represent the embedding coordinates 
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of the world sheet in a target spacetime background of dimension D. Since these fields 
are reinterpreted as matrix valued sections with a non-commutative fiberwise Fedosov 
product it is clear why the embedding coordinates of the string world sheet inherit a 
non-commutative product structure! 
Quantization of p-branes [50] should be achieved using deformation quantization meth- 
ods for higher dimensional generalizations of symplectic geometry [47]: the so-called 
Nambu-Poisson Hamiltonian Mechanics. Deformation quantization of Poisson mani- 
folds has also been discussed by [48,49]. 
We hope that the Moyal-Fedosov deformation quantization approach to W Geometry 
will provide many new insights into the non-perturbative structure of string theory. In 
particular the role of W, strings [14,15]. Paraphrasing Fairlie [23]: Moyal stands for 
“M”; today we advocate that M-theory “stands upside down” for W. Important objec- 
tions why W geometry is still far from being understood have been recently raised by 

1521. 
It has been shown in [35] that 40 conformal field theory can naturally be formulated in 
real four-folds endowed with an integrable quaternionic structure and a 4 D extension of 
20 CFI on Riemann surfaces was constructed. Quaternionic (Fueter) analyticity played 
the role of 20 holomorphic analyticity. It is warranted to explore further the connections 
between the self duality and W-Weyl conformal invariance properties of W, geometry 
and the quatemionic geometry of 40 conformal field theory. 40 generalizations of the 
20 WZNW models were studied by [41]. Earlier work in that direction was provided by 
Park [30]. The fact that quatemions are non-commutative points in the right direction. 
The non-associative character of octonions suggests that 8 D non-associative geometries 
are no longer speculative figments of the imagination but should also come to play an 
important role in physics. 
The view advocated here of W geometry as flat foliations in higher dimensions may 
have an important relation with Zois [5 l] proposal for a non-perturbative Lagrangian of 
M theory in I 1 D in terms of characteristic classes of flat foliations (although in in odd 
dimensions) . 
A forthcoming project involves to write down Yang-Mills types of action characterizing 
the higher spin field dynamics. In particular to establish the connection to Vasiliev’s work 
[53,54]: higher-spin gauge theories in four, three and two-dimensions and interactions 
of matter fields based on deformed oscillator algebras have been studied by Vasiliev 
and others . A reformulation of the dynamical equations of motion, called “the unfolded 
formulation”, in a form of a zero curvature condition and a covariant-constancy condition 
imposed on an infinite collection of zero-forms allowed Vasiliev to describe all spacetime 
derivatives of all the dynamical fields and reconstruct these fields by analyticity in some 
neighborhood of a fixed point. There are many similarities with the work of [53,54] 
and ours: a zero curvature condition is imposed; a star product also appears in order to 
describe the nonlinear dynamics; a deformed oscillator algebra realizing the universal 
enveloping algebra of symplectic groups is essential... 
What is required then is to integrate Vasiliev’s formulation in the Moyal-Fedosov pro- 

gram. 
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